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Introduction




LIRIS laboratory - https://liris.cnrs.fr/en

» 330 members
» 12 research groups structured in 6 areas

@ ........ @-resenssnnnnnennannans o

Imagine




SAARA research group

Analysis and synthesis 4
1PN

Virtual human
In motion

Interactive simulation

Multi-physics modeling
and simulation




Analysis and synthesis

» Online recognition of g TN
complex activities from video = %% ~ T~ §

 Style and expression
recognition and synthesis

* Recognition of facial
expressions

- Child and micro-expression




Interactive simulation

« Motion control for stable, robust, reactive and
bio-inspired human motions

- Today’s topic !
- Simulators to learn or train medical gestures




Multi-physics modeling and simulation

» Real-time tracking of a tumor from
external data
- To optimize the radiotherapetic treatment

- Use a physiological and biomechanical
patient-specific model of the respiratory
system




Context and fondamentals




Humans and virtual humans

- We are humans among others
- We desire to populate virtual worlds with humans
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Many questions arise

How should they look like?
 Photorealistic, symbolic representation, cartoon style...

What should they do?

- Body movement, emotion and facial expression, hair,
cloth, ability to get injured or sick, age...

How should real humans interact with them?

- Direct control, autonomous, virtual and augmented
reality, multi-sensory input and feedback...




Physics based, interactive animation

* Physics based animation is useful to simulate
passive phenomenon

» Fluids, clothes, soft-bodies, ragdolls
- State-of-the-art methods allow to actively control
complex systems such as virtual characters

* Improvements in robustness, visual quality and
usuabllity




Physics based, interactive animation

* In 1996, we could * ... We now have that
have that in In real-time (control
Interactive time + rendering)

(control only) ...

Hodgins et al. 1996 Lee et al. 2018




Physics based, interactive animation

* The motion is the result of a process

» Benefits
* The possibility to generate motions without data set

 Objects and characters interact in a physically realistic
way
» Main issue : more difficult to control than pure
Kinematics
* Need forces and torques
* No direct global control
- Require components to manage balance, etc.




Actuators




Actuators




Actuators

« Joint tor
e EXxter




Actuators




Actuators

« Joint tor
e EXtern

* Virtua
torqu




Actuators




Actuators

- Joint torques (fake motors at joints)
» External forces (puppetry like technique)

- Virtual forces (emulation of external forces by
torques)

* Muscle forces (movement from contraction
forces)
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Actuators

- Joint torques (fake motors at joints)
» External forces (puppetry like technique)

* Virtual forces (emulation of external forces by
torques)

* Muscle forces (movement from contraction
forces)

* Muscle fibers, contractile elements activated by
the brain ... up to the source of motion! Where do
we stop?




Motion control




Motion controller design

» Joint space motion control
* tracks kinematics targets through local feedback

» Optimization based motion control
- finds optimal actuator values through optimization

 Stimulus-response network control

- genetically evolves controllers connecting sensors to
actuators




Motion controller design

Joint space Optimization Genetic




Genetic approach to motion control

* Artificial neural network (ANN) created through
evolutionary algorithm

 Hierarchical and modular design

- step-by-step evolution from lower-level simple
objectives (e.g. individual DOF manipulation such as
posing)

- to high-level functionalities (e.g. coordinated DOFs
such as walking and running)




Genetic approach to motion control

* posing + standing + reaching




Evolution of "posing” control module.
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Hagenaars, Pronost, Egges - CASA 2014



Genetic approach to motion control

Fitness (%)
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Joint space motion control

» Simple data-driven control for simulated bipeds
* No pre-processing of reference motion
* No inverse dynamics
* No online optimization feedback




Data-driven control for bipeds

 Tracking of individual DOFs by PD controllers

- Jacobian Transpose Control for balance

- Manages COM position and velocity, trunk orientation
and angular momentum

* Applies virtual forces and torques on lower limbs

- Offline optimization for specific motions and
characters
- PD gains and weights of balance tasks

- According to pose error, stance state error, foot sliding
and total torque
» Optimization based on Covariance Matrix Adaptation







Gait control for immersed bipeds

* Objective to develop a fast and interactive
method to control human gait for immersed
bipeds

 Create a physical controller to produce plausible
gait patterns involving the interactions between
the virtual character and the fluid




Gait control for immersed bipeds

« Simple hydrodynamics
- fluid drag and buoyancy force

- Offline optimization of the target gait pattern
- consumed energy, liquid drag, angular acceleration

- Real-time gait pattern adaptation
* motion combiner

* Precise velocity tracking
* learning strategy and inverted pendulum model

» Real-time control of one character immersed In
up to 1 meter of liquid walking at up to 1 m/s




Real-time gait control for partially
Immersed bipeds

Carensac, Pronost, Bouakaz - MIG 2015



Low frequency simulation

» Simple hydrodynamics does not include dual
Interactions

* Require actual fluid simulation that takes (a lot
of) computation time

- Save some using simple and low frequency
motion control
* Frequency dependent PD gains

 Contact (ground/feet) stabilization using online
optimization on a reduced model




Low frequency simulation
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Carensac, Pronost, Bouakaz - CASA 2018



Simulation window for DFSPH

 Fast initialization of new fluid at rest
 Possibility to use any boundary shape
» Use open boundary to prevent reflections







Fluid simulation on GPU

* GPU implementation of the DFSPH

» Implementation of several CPU optimizations
and study of their impacts
* Neighborhood indexing
- Reference table for the kernel function
* Warmstart




Wedge drop experiment

Left : closed boundary // Right : open boundary

boundary: box 1x5x10 (123000 particles)
fluid: 1m (91200 particles)






Pathological motion
prediction




Anatomical virtual humans

* Not common in computer animation even though
relates better to real motions
- are computationally expensive
* require accurate and specific modeling and tracking
- have a high dimensional parameter space

* Recent trends In research
* Speed-up execution by making assumptions and
simplifications
» Offline optimization of
» the controller including modeling and tracking
* the actuator values




Laclé, Pronost - CAVW 2015



Simulation of pathological gait

» Goals
- Estimation of the internal condition of a patient

* Prediction of motion after natural evolution,
disease/disorder, therapy or surgery

» Challenges
- Patient-specific modeling of pathologies
* Design of a predictive simulator
 Controllability and stability

* Projects
» Gait for RoM reduction and drop foot pathology
 Accessibility tasks for weakened (elderly) people




The OMEGA project

Initial condition (CO0) Altered condition (C1)

==

* RoM reduction : CO=without knee brace, C1=with
+ Drop foot pathology : CO=initial, C1=electrical stimulator




Drop foot pathology

» Weakness of the anterior leg muscles preventing
ankle dorsiflexion

- Usually observed after a stroke

HIP ang

Cuff electrode

Heel switch

KNEE mom ANKLE mom

GMX act HAM act

Ver GRF Hor GRF

GAS act




Optimal control

 Using the framework from [Falisse et al., 2019]
* Fitness function

Jrrack = fn-fZ (er(q — qr)? + Wry(Mj — Mjg)? + Wr3(Fr — Frg)? + Wrs(Mr — Mrg)? + Wrsa® +

Wre(4? + a2 + Fm?)) dt, (1)

- Most outcomes as expected

- Slower with brace, limited range of motion, decreased
hip flexion, ankle joint moments and anterior-posterior
GRF

- Faster with FES, larger ankle dorsoflexion

 Realistic muscle activation patterns and their
abnormalities




Optimal control
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Neural-network motion prediction

 Training of a NN to replicate a motion (CO)

 Outputs angular offsets to the reference motion fed to
DoF based PD controllers

- Sufficient robustness to produce variations of the
reference motion (CO+A)

- Stabilizing Control Motions (SCM) are target motions
producing stable motions (predictions)




Neural-network motion prediction

« We search SCM by optimization

- Search space is reduced by

* Representing the motion using parametric curves with a small
number of control points

- Selecting the most relevant trajectories, depending on the
pathology

Computaton
of Simulated

CM

Altered
Skeletal Model

Reference
Motion

Model

’ Forward Simulator
Raw Motion Data
Data (c1) Traitements ' Trained NN based controler
‘ Scaled Skeletal | -




Neural-network motion prediction

hip_|_abduction

(b) Right hip abduction

pelvis_pas_y
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(c) Right knee

84

(d) Pelvis coronal angle (e) pelvis height

RoM reduction Solid green = simulated CO
Solid blue = simulated C1
Solid red = predicted C1

(f) back bending

Dotted green = reference CO
Dotted blue = reference C1
Dotted red = SCM




Neural-network motion prediction
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RoM reduction Solid green = simulated CO Dotted green = reference CO
Solid blue = simulated C1 Dotted blue = reference C1
Solid red = predicted C1 Dotted red = SCM




Motion control for accessibility

» Use common motion controller (i.e. joint space
control with offline optimization) to simulate less
commonly studied motions
- Get it a train/bus/car with gap, get on/off treadmill
- Challenging for weakened people

- We are currently creating the data set




To conclude

* The gap between offline and online motion
control will remain
 The real-time constraint for interactive applications
limits the possibilities
» The future of control and prediction

* Depends on application: specific/generic, interactive,
actuators, ...

* Active physics, anatomical modeling, deep learning,
multi-scale simulation, ...
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